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Scaling relations of cluster distributions for the Wolff algorithm are derived. We 
found them to be well satisfied for the Ising model in d=  3 dimensions. Using 
scaling and a parametrization of the cluster distribution, we determine the critical 
exponent fi/v = 0.516(6) with moderate effort in computing time. 
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1. I N T R O D U C T I O N  

Local Monte Carlo simulations of Ising spin systems in the critical region 
are severely impaired be the so-called critical slowing down. ~1'2) Cluster 
algorithms/3'4) improve this situation considerably. The transition from the 
disordered into the ordered phase of the system manifests itself by the onset 
of cluster percolation. If these clusters are physically relevant, the critical 
exponents describing the cluster distribution near the percolating threshold 
should be related to usual thermodynamic exponents. For the Swendsen- 
Wang algorithm ~3~ (hereafter called SWA), de Meo et  al. ~5) have suggested 
that the exponent in the power law of the cluster distribution near the 
critical temperature Tc is determined by the exponent fl/v. Obviously such 
a relation would be very useful, since cluster distributions can be measured 
at one value of the temperature and of the size L of the lattice. As one can 
see from the data .of ref. 5 for the d = 2 Ising model such a relation cannot 
hold at lattice sizes treated in that work. However, finite-size scaling for the 
distribution for large clusters can be valid and provide additional informa- 
tion about the critical exponents~ Whereas SWA decomposes the whole 
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lattice into clusters, in the algorithm advocated by Wolff (4) (hereafter 
abbreviated WA) only one cluster is constructed in each Monte Carlo step. 
As shown by Tamayo et a/., (6) in this method the fraction of large clusters 
is enhanced by an order of magnitude as compared to SWA, providing a 
better sensitivity to possible scaling properties. Also, it may lead to a 
further reduction of critical slowing down, depending on the dimension. (6 8) 
In this paper we derive and test for WA the analogous scaling properties 
to SWA. The hope of extracting critical exponents for the d = 3 Ising model 
from single cluster distributions turns out not to be justified, at least not 
within our statistics and the considered range of lattice size L ~< 36. One of 
the main objectives of this paper is to find a reasonable parametrization of 
the cluster distribution. If finite-size scaling is true, such a parametrization 
can be used for an accurate determination of the exponents involved in the 
scaling region. 

The paper is organized as follows. Section 2 summarizes the cluster 
algorithm and the relation of the cluster distribution to the physical 
observables. In Section 3 we derive the exponents in a finite-size scaling law 
for clusters and present the motivation for the parametrization employed. 
Section 4 contains the comparison of scaling and parametrization with 
Monte Carlo simulations of the d = 3 Ising model. In Section 5 we give our 
conclusions. 

2. CLUSTER A L G O R I T H M S  

We consider spin variables a x =  _+1 defined on the sites of a 
d-dimensional cubic lattice of length L and volume V = L a. An Ising model 
is characterized by the energy between next neighbors, 

E(a)= - ~  axax+u (1) 
X , #  

The summation in (1) runs over all links (x, x + # ) .  We are interested in 
the expectation value of an observable A in thermodynamic equilibrium 

1 ( A ) = ~  ~ A(a)e E~,)/v (2) 
{ox} 

A possible constant in (1) can be absorbed in the temperature T in (2). 
With the Monte Carlo method ~2) Eq, (2) is evaluated by generating a 
sequence of spin configurations {a},.with relative frequency proportional 
to the Boltzmann factor 
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We get an estimator for ( A )  by summing over all generated configurations 

1 
A({cr}n ) (4) 

The error in (4) is given by A ( A ) =  ( t a / ~ f N ) A A ,  where AA denotes the 
measured variance and ta the autocorrelation time. For a local algorithm 
(heat-bath or Metropolis (u) ta at the critical temperature T,. increases 
strongly with L, preventing (so-called critical slowing down) the simulation 
of large critical lattices: Cluster algorithms lead to substantially smaller 
values of ta. They have in common the following prescription for constructing 
the cluster. If point x belongs to the cluster, a neighboring point x', which 
does not already belong to the cluster, is included with probability 

0, ax#~rx, (5) 
p ( x ' e C ) =  1 - exp( -2 /T) ,  ax = cry, 

This procedure is repeated until all neighboring points do not belong to the 
cluster. Equation (5) was proposed by Coniglio and Klein (9/ and Hu. (l~ 
Swendsen and Wang (3) developed an algorithm by using the prescription 
(5) to decompose the entire lattice and chosing with equal probability + 1 
for the spin on each cluster. The equivalence with the random cluster 
model (11) was used in the proof that the temperature dependence of (5) 
leads to the Boltzmann distribution (3). 

In the single cluster method of Wolff (4) the successive spin configura- 
tions {cr},+~ are obtained from the {~r}n by chosing a starting point Xo at 
random, constructing one cluster according (5), and reversing all spins ~r x 
of this cluster. 

A quantity easily measurable in the algorithm is the cluster size 
distribution p(s),  where s denotes the number of sites belonging to the 
cluster. There exists a close connection between the Wolff cluster method 
and the SWA method. (4'~2~ One always can interpret one Wolff cluster as 
one member of a complete SWA decomposition of the lattice. Therefore the 
probability p(s)  to construct a cluster of size s in WA must satisfy the 
relation 

P(S)wA = sn(S)swA (6) 

where n(s) denotes the number of s-clusters per spin in SWA. The SWA 
can be interpreted as a problem of correlated percolation. (3'HI Due to the 
identity (6), we can use this interpretation also for the Wolff cluster. 

In the following we are interested in he critical region. This region is 
characterized by small values of the parameter 

r = 1 - T/T~ (7) 
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and large cluster sizes s with finite values of s Irl ~ In the high-temperature 
phase (~<0)  we expect (e.g., refs. 13) from percolation for the infinite 
system a cluster distribution of the following form: 

p ( s )  = S - 1  - -  OlF( s I~102) (8) 

where F(t)  is regular at t = 0 and strongly decreasing at t --+ ~ .  The power 
law for p obtained by an extrapolation to z ~ 0 will be modified by finite- 
size corrections. In the low-temperature phase (r > 0) percolating clusters 
will appear. A parametrization of the form (8) (eventually with a different 
scaling function F and different exponents 01,2) will describe only the finite 
clusters. In addition there will be a contribution of the infinite cluster. 

Two observables can be obtained from the cluster size distribution: the 
susceptibility/spin Z above T~ and the order parameter m below To. They 
can be derived from the Green's function 

G = L  -a ~ (ornery) (9) 
X, y 

As shown in ref. 12, G can be expressed as the mean cluster size 

G = f ds sp(s) (10) 

For T >  To, the rhs of (9) coincides with the susceptibility and one gets 

z=f dssp(s) (11) 

Below T c the rhs side of (9) diverges in the limit L --, oo according to 

a = La(m 2 + O ( L - d ) )  (12) 

due to the finite order parameter m. In (10) this divergence results from the 
contribution of the percolating cluster. If the lattice size is larger than the 
correlation length (L > ~,-, Irq -~), the cluster distribution consists of two 
parts. Small clusters representing the finite clusters are well separated from 
large clusters forming a narrow peak at s = sp. These large clusters are 
caused by the percolating cluster of the infinite system. A peak reflects a 
uniform density of this cluster. The large clusters dominate the rhs of 
Eq. (10) and we obtain 

G ~- s e p(s) ds (13) 
o 
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where So has to be chosen somewhere in the gap between finite and 
percolating clusters. Since the probability to end in a percolating cluster is 
given by 

f, odS p ( s ) = s e  L d (14) 

we obtain finally from Eqs. (12-14) 

fs ~176 
m =  ds p(s) (15) 

0 

Note that the relation (11) is an exact identity for T> To., whereas (15) 
holds only up to O(L d) terms and requires a prescription to separate the 
large clusters from p(s). Expressions for Z in the case T< Tc and m(r) in 
the range T> Tc can be found in ref. 5 for SWA clusters. Since these rely 
on specific properties of the SWA decomposition of the lattice, they have 
no correspondence in the Wolff algorithm. 

3. F INITE-SIZE EFFECTS 

In the critical regime, finite-size scaling laws are expected to hold. In 
the first part of this section we generalize the results of ref. 5 for SWA 
clusters to the case of WA. The main effect of a finite L will be the 
occurrence of percolating clusters also for T> To. In the second part we 
treat this effect by a suitable parametrization of the cluster distribution. 

Finite-size scaling follows from the invariance of the free energy under 
the following rescaling of the size L, temperature ~, and a small magnetic 
field H: 

L ~ L'  = p L  (16) 

7j ---e 72' ~-- p 1/v T; (17) 

H--* H'  = y / V - d H  (18) 

The exponents of p in (17, 18) describe the anomalous dimensions of v and 
H in the critical regime. Eliminating one of the variables with (16)-(18), 
one gets the following scaling laws (t4) for the susceptibility and the 
magnetization at H =  0: 

z(v, L ) =  I-el 2'~ '~dy(z) (19) 

m(r, L)  = z#rh(z) (20) 
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The independent functions )~ and rh only depend on the scale-invariant 
combination z = [~[v L. Equations (19) and (20) are eqivalent to the following 
anomalous dimensions for Z and m: 

Z "-')" Z '  = I0 d 2fl/v Z (21) 

m ~ m'  = p -/~/~m (22) 

To derive the critical exponents in a scaling law for the cluster distribution, 
we have to know the anomalous dimension of s and the distribution function 
p(s, ~, L )  for large s according to 

S ~ S' = p Y ' s  (23) 

p --. p' = pYpp (24) 

For  T >  Tc we can extend the limits of integration in (11) to the scale- 
invariant interval [0, oo ], since near s = 0 we obtain for 01 < 1 only a finite 
contribution to the divergent Z and at s ~ ov the distribution p(s)  should 
vanish exponentially. The scaling dimensions on both sides of Eq. (11) 
have to match, which leads to 

2fl 
2y s + yp = d -  - -  (25) 

V 

The same argument can be applied to Eq. (15), since for sufficiently small 
T <  Tc the order parameter  m does not depend on So. Comparing the 
dimensions on both sides of Eq. (15), we obtain a second relation between 
y,  and yp, 

Ys + Yp = - -  (26) 

Assuming the same diension below and above Tc, (25) and (26) fix the 
anomalous dimension of s and p under the transformation (16), 

s --. s' = pd-~/VS (27) 

p__+ p , = p  dp (28) 

From (27), we see that the cluster density x = sL d has the dimension of 
a magnetization, and from (28), pL  a has to be dimensionless. Substituting 
the density x for the cluster size s, we see that the corresponding distribu- 
tion function q(x, ~, L )  must be scale invariant. It can only depend on two 
of the combinations y = x ( L / L o )  ~/v, y '  =xl~l B and z =  IrlVL: 

q(x, z, L) = ~)(xlzl  ~, z) (29) 
( ~ ( x ( L / L o )  € z) 
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The scale invariance of the distribution q of the cluster density x =  sL  --~ 
appears to be less surprising, if we recall that for uncorrelated percolation 

dx/x  q(x)  has the meaning of a free energy. (1~'~5~ If the simple distribution 
(8) is valid, scaling requires for the exponents 

01=1/6  with 6 = v d / f l - 1  

02 = v d -  fl (30) 

The scaling law (29) and the exponents (27), (28), (30) agree with those of 
ref. 5 for SWA clusters: As pointed out in ref. 5, the scaling functions may 
be more complicated. As a consequence, the exponent 01 at r 5 0  may not 
agree with (30), whereas (29) still holds. Equation (29) allows a test of 
scaling without resorting to a particular parametrization such as (8) by 
plotting the cluster distribution q at a fixed value of z as a function of 
y =  (L/Lo)  ~lv or y ' = x [ ~ l - P .  If (29) is true, the distributions should be 
independent of L. A more accurate test of scaling is possible if we use a 
parametrization of the cluster distribution. A form motivated by the Fisher 
droplet model c16) 

c 
ql (x )  = ~ exp ()-'c)~ (31) 

describes the data only for T >  T ,  and large sizes L with 03 = 1. We get 
finite-size corrections by the following consideration. The WA generates 
clusters locally and therefore we expect all large clusters to have the same 
average density. At a finite volume there will be a critical density #, where 
clusters of the infinite system with s > #L J are prevented from any further 
growth. This leads to the following modification of (31): 

q(x) = ql(X) 0(~-- X) q- Cp 6(X-- #) (32) 

The critical density/~ will fluctuate and by this the discontinuous function 
(32) will be turned into a smooth curve. A simple Gauss distribution for/~ 
will not be adequate, since fluctuations larger than the mean value are still 
cut off by the finite size, whereas smaller ones are not. Therefore we use an 
asymmetric Gaussian defined as 

g(t, r) = 1 (O(t)e '2/2(1 + r)2 + 0 ( - -  t ) e  -t2/2(1 r)2) (33) 
(27r) 1/2 

and replace the 6 function in (32) by g( (x - l z ) / c r ,  r)/cr with a finite width 
~r. We have a width a(1 + r )  for x < #  and a ( 1 - r )  for x>~t.  In the same 
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way the step function is replaced by the analogous complementary error 
function 

E(t, r) = ft ~ dt' g(t', r) (34) 

For T<Tc the exponent 03 in (31) should be 1-1/d. This is pure 
geometrical effect of SWA clusters, that formation of finite clusters in the 
presence of the percolating cluster is suppressed by the physical surface. ~ 
Because of (6), this also holds for the WA clusters. Therefore (32) should 
be applied to the data in the form 

xl_~exp_(Zx,O3E(_{_7~ff_ ) f~ (x-t* r) (35) q2(x)= , r + g a ' 

with 

11 T>T,. (36) 03= '- l/d, T< Tc 

Equation (31) may be recovered from (36) by putting l* = ~ .  We use both 
forms only as a parametrization. In particular, the exponent 01 may differ 
from its scaling value 1/6 from Eq. (30) if the scaling function ~ or ~-is a 
more complicated function of its two arguments. At r = 0, q(x, O, L) is a 
function of y only. We can use (35) as a parametrization of the scaling 
function 

y - #  

with y : = X ~ o o J  and Lo =20 

(37) 

The choice of the exponent 03 = 1 - lid is motivated by the fact that the 
finite system at z = 0 already exhibits a percolating cluster. Note that if 
scaling is true, the parameters l*, a in (35) should scale like a magnetiza- 
tion, whereas in (37) this dependence is already taken into account by the 
L dependence of y. 

In the next section we compare the parametrization ql,2,3 in Eqs. (31), 
(35), and (37) with Monte Carlo simulations of the d =  3 Ising model. 

4. C O M P A R I S O N  WITH THE d = 3  ISING M O D E L  

To compare the scaling properties of the cluster distribution with MC 
simulation, we prefer d =  3 over d =  2 for several reasons. In d =  2 thermal 
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quantities at H =  0 and critical indices are known exactly. Moreover, the 
percolation point for geometrical clusters should coincide with the thermal 
critical point for topological reasons. (15) Also, there already exists a study 
of the Swendsen-Wang cluster method for d = 2 .  (5) To perform the 
comparisons mentioned at the end of Section 3, the critical temperature 
and partly the exponents have to be known, which have been determined 
for d =  3 (s.c. lattice with high accuracy by Pawley et al.(171: 

1 
- -  = 0.221655(4) (38) 

v = 0.629(4) (39) 

/3 = 0.324(4) (40) 

vd 
6 = ~ - -  1 =4.83(3) (41) 

These values agree within errors with those obtained in refs. 18 and 19 and 
the values obtained by series expansion.(a~ = ( T -  Tc)/T~, always refers to 
(38). The values of v, fl, and 6 are taken from (39)-(41) whenever we refer 
in the following to known values of the exponents. We simulated the d =  3 
Ising model (1) at various r with the WA on simple cubic lattices of size 
L (12 ~< L~< 36) with periodic boundary conditions. To identify percolating 
clusters on a finite volume we made one run ( L =  20, r = 0) with cylinder 
geometry (free boundary conditions in one direction and periodic in the 
others). We used mainly data for T~> To., since for T <  T c also WA 
becomes inefficient and within our assumption of equal critical behavior 
above and below T~. we cannot learn anything more about critical indices. 
Typically we generated 104-105 clusters at each set of values of z and L, 
from which we determined the distribution q(x, 3, L). Statistical errors are 

obtained by binning the data and taking Aqx = 1 / , , / ~  in each bin. A bin 
size exponentially increasing with x accounts for the decrease of q over 6-7 
orders of magnitude from x = l / L  a to x ~ O ( 1 ) .  Our errors are purely 
statistical and do not include the autocorrelation time ta(X), which ought 
to have been determined for each x separately. We can estimate an average 
value from the susceptibility z = ~ d x x q ( x ) ,  which leads to ta~2~4,  
depending on ~ and L. 

Figure 1 shows q(x) for T >  Tc at r = -0 .054 and L = 20 on a double 
logarithmic scale, z = 3.19 is sufficiently large that the power law is cut off 
by the exponential factor in (31) before finite-size corrections can become 
important. The curve is a fit with the parametrization (31). The parameter 
values for 2, 01, e are obtained by minimizing Z ~ and are given in Table I 
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Fig. 1. Measured duster distr ibution q(x) for T >  T C at ~=  -0.054 and L = 2 0  (z=3.19)  as 
a function of x on a double logarithmic scale. The curve is a fit using (31). Parameters are 
given in Table I, Fit A. 

Table I. Parameters for the Various Fits Per formed a 

Fit A Fit B Fit C Fit D Fit E 

# (clusters) 5 • 104 6 x 104 6 • 105 8 • 105 2 • 104 
"c - 0.054 - 0.0066 0 0 0.060 
L 20 28 20, 28, 36 20(cyl.) 20 
z 3.19 1.1 0 0 3.41 
Equation (31) (35) (37) (35) (35) 
z2/Ndata 296/60 66/60 1550/195 928/70 73/45 
C 0.058(2) 0.0242(2) 0.0255(6) 0.0324(5) 0.030(4) 
2 21.5(8) 0.3(3) 9.7(3) 1.8(1) 61(2) 
0~ 0.157(3) 0.208 0.208 0.224(3) 0.220(3) 
03 1 1 2/3 2/3 2/3 
p oo 0.187(6) 0.3441(5) 0.213(2) 0.556(5) 
cr 0.076(1 ) 0.0902(5) 0.108(9) 0.030(1 ) 
r - -  0.43(3) 0.446(3) 0.407(40) 0.027(2) 
cp 0 0.42(5) 0.645(3) 0.555(20) 0.97(1) 

a The first line gives the number of cluster Monte Carlo steps. Line 5 identifies the used 
parametrization by the number of the equation. Line 6 indicates the Z 2 obtained for Naata 
points used in the fit, and in the remaining lines the parameter values are listed. Errors in 
parentheses refer to units of the last figure given and do not include t a. Entries without 
errors are kept fixed in the fit. 
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Fig. 2. Measured cluster distr ibution q at z =  1.1 for T >  Tc as a function of x~- t~ on a 
double log scale. Scaling is satisfied if the values at L = 20 ( [] ), L = 28 (O) ,  and L = 36 ( A )  
coincide. The curve is a fit using (35) to the L = 2 8  data for s~> 15. Parameters  in Table I, 
Fit B. 
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Fig. 3. Measured cluster distr ibution q at z = 0 for  L - 2 0  ( [ ] ) ,  L = 28  ( O ), and L = 36  ( & ) 

as a function of y = xL  ah. The curve is to all data  using (37), omitt ing clusters with s ~< 15. 
Parameters  in Table I, Fit C. Scaling is satisfied if data  for different L lie on the same curve. 
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(Fit A). We obtain a reasonable description of the data; however, the value 
01 =0.157(3) is in disagreement with 01 = 1/6=0.208 from (41). This low 
value of 01 depends entirely on the values of q(x )  at s<~ 10, where we 
neither expect (.31) to be valid nor any scaling properties to hold. Omitting 
the low-s points, the fit can no longer separate a power law from an 
exponential decrease in his limited range of x. Decreasing r, we find that 
finite-size corrections described by the Gaussian in (35) become important. 
This can be seen in Fig. 2, where the distributions at fixed z = I zlVL = 1.1 
are shown for various L as a function of y ' =  x I~1 ~. For/~ and v we use 
the values (39), (40). From the agreement of the distributions for different 
L we conclude that the scaling law (29) is in good agreement with the data. 
The curve represents a fit using the parametrization (35) with 01 = 1/6 and 
03 = 1 at L =  28. The parameter values are given in Table I (Fit B). The 
form (35) fits the transition to the contribution of the large, presumably 
percolating cluster extremely well. The value of Z 2 = 66 for 60 data points 
is acceptable, bearing in mind that the errors do not include t a. From the 
fit we excluded all points with s ~< 15. Otherwise the exponent 01 could not 
be kept at its scaling value. A test of scaling analogous to Fig. 2 for the 
d =  2 Ising model has been done in ref. 5 by separating the SWA cluster 
distribution n(s) into the contribution of the largest cluster and the 

10  2 

~rlo 

10  "~ f 
/....- 

10 ~ 

10 -"+ - -  

lO+m 10  -~ 1o  ++ 

X 

Fig. 4. Measured cluster distribution (dots) at z = 0 and L = 20 using film geometry. Open 
points represent the percolating clusters. The curve is obtained by a fit using the parametriza- 
tion (37). Parameters  in Table I, Fit D. 
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remainder. Since no errors have been given, it remains inconclusive 
whether the small deviations from scaling are due to statistical fluctuations 
or the separation mentioned before. 

At the critical point ~ = 0 the finite-size corrections should become 
more prominent, which is indeed the case, as Fig. 3 shows. There we 
present the distribution q at ~ = 0 as a function of y = x(L/Lo) ~/v, taking 
~/v from (39), (40) and L0 = 20. If scaling (29) holds, q can only depend 
on y and distributions with different L should lie on the same curve. Again 
the scaling law (29) is well satisfied. The curve corresponds to a fit, using 
the parametrization (37), to all data with s~>15 (parameters given in 
Table I, Fit C). 

To check that the Gaussian peak is due to the percolating clusters, we 
present in Fig. 4 the distribution at ~ = 0 and L = 20--Lo with cylinder 
geometry together with the clusters connecting the free surfaces of the 
lattice (open points). The curve represents a fit (Fit D in Table I) using 
(37), which, at L0=20,  is identical to (35). The Gaussian peak is 
dominated by the percolating cluster, as we would expect. Comparing the 
distributions in Figs. 3 and 4 or the values of the parameters in Table I, we 
see that the cluster properties are very sensitive to a change of boundary 
conditions. The fraction of 10 % surface points suppresses the large clusters 
considerably. 

In the fits to Fig. 2 and 3 we kept the exponent 0i at its scaling value. 
It cannot be reliably determined by a fit to a single x distribution, since a 
small change in the choice of F(x) will have drastic effects on the value of 
01. Nevertheless, the scaling laws (29) are very sensitive to the values of/3 
and ~/v. At z =  0 only ~/v enters and the scaling value of 01 = B/vd-~ 
depends on he same combination of exponents. If we repeat the fit in Fig. 3 
with different values of ~/v, we can determine X2(p/v) as shown in Fig. 5. 
The minimum gives the best scaling exponent for our data. An error for ~/v 
can be determined by increasing )~2 by the autocorrelation time ta. Estimating 
the latter from the susceptibility, we should use the criterion A)~2=4, 
leading to 

-fl- = 0.516(6) (42) 
P 

Equation (42) is in agreement with ~/v = 0.51(1) using finite-size scaling of 
the susceptibility (19) and with 0.516(3) from Monte Carlo renormalization 
group methods {17) based on a local Metropolis method. Note that the 
cluster method requires substantially less effort in computing time to reach 
the same accuracy [knowing To, the data used for (42) require 15 hr on a 
VAX 8550 computer]. Determination of exponents from the scaling at 

822/66/b2-8 
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Fig. 5. 

1 5 7 O  

1 5 6 0  

i 
1 5 5 0  , , , , , 

0 . 5 0  0 .51  0 . 5 2  0 . 5 3  

~ / v  

Plot of Z 2 for Fit C to the data in Fig. 3 as a function of ~/v. The broken line 

indicates an increase AZ 2= 3 over the maximum value. 

z -r 0 observed in Fig. 2 is slightly more complicated. First we need to know 
v in order to have a constant z = tr[~L, and second, different combinations 
of exponents enter in y'  and 01. If we fix v at the value (39), we can scale 
the argument in the fit to L = 2 8  (Fit B) by x ~ x(28/L) ~/v and calculate 
Z2(/~) at L = 36 as a function of/~. From the minimum of Z2(/~) displayed 
in Fig. 6 and A2Z = ta ~ 3, we obtain the best scaling value/3, 

f l=0.326(2) (43) 

compatible with the previous determination (40). Scaling down to L = 20, 
Z 2 has only a very broad minimum compatible with (40). 

1 2 0  

1 0 0  

8 0  i q i i 

0.320 0.324 0.328 

B 
Fig. 6. Plot of Z 2 for the data at L = 3 6  in Fig. 2 scaling the Fit B to L = 2 8  by 

x ~ x ( 2 8 / 3 6 )  ~/~ as a function of fl for fixed v =0.629. The broken line indicates AZ 2= 3. 
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In the broken phase T <  Tc the Gaussian peak is clearly separated (see 
Fig. 7) and becomes more symmetric with increasing Irl. The curve in Fig. 7 
represents a fit using the parametrization (35). Parameters  are given in 
Table I (Fit E). 

The determination of the critical indices is fairly accurate. With regard 
to the small lattice size (L ~< 36), we have to worry about  corrections to 
scaling. A first source of scaling corrections occurs if the quantity studied 
receives contributions from small clusters, where the assumed scaling law 
(29) cannot be valid. In he analysis of critical indices we have eliminated 
this source by removing clusters with s < 15 from the fit. The more serious 
second source is the possibility that the asymptotic scaling equation (29) is 
not yet valid. In the parametrization equation (35) we can look for possible 
scaling violations by fitting the ~ = 0 data at each L separately. If scaling 
holds, the parameter  r and the ratios a/l~ and Cp/l~ should be independent 
of L, whereas/~ should vary with L according to 

l~=l~(Lo)(L/Lo ) ~/v (44) 

The resulting values of/~ are shown in Fig. 8 as a function of L. The power 
law (44) is well satisfied with an exponent 

fl/v = 0.511 (4) (45) 

10 4 

~ 1 0  ~ 

10 2 

10 -2 / 

/ 
10 -~ - - ~  , 

10 ~ 10 -~ 10 -~ 

X 

Fig. 7. Cluster distribution q for T< T c at z = 0.023 and L = 20 (z = 1.86) as a function of 
x on a double log scale. The curve is a fit using parametrization (35) with parameters given 
in Table I, Fit E. 
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Fig. 8. Fitted values of/~ at r = 0 using (35) as a function of L on a double log scale. The 
straight broken line corresponds to the power law (44) with ,8/v =0.511(3). Errors of the fit 
values of/~ are scaled by t A = 3. 

which agrees with our determination (42). The other parameters (listed in 
Table II) are compatible with scaling. Within the validity of our parametri- 
zation we find no significant scaling violation. There remains an unknown 
systematic error due to the possibility that cluster distributions at L >> 36 
change their qualitative behavior and cannot be described by (35) or (37) 
with an acceptable Z 2 probability. 

Table II. Values of the Parameters Describing the 
Percolating Clusters in Fits to the Distributions at T=  0 

and Various Lattice Sizes L a 

L ~ a /#  r ce /~  

12 0.442(2) 0.243(1) 0.420(6) 1.84(1) 
20 0.343(1) 0.251(4) 0.421(12) 1.80(1) 
24 0.308(1) 0.234(8) 0.346(24) 1.77(3) 
28 0.286(1) 0.255(8) 0.384(24) 1.85(3) 
32 0.268(1) 0.238(10) 0.326(24) 1.69(4) 
36 0.252(1) 0.240(10) 0.316(24) 1.78(4) 

Scaling requires a/#, r, and Cp/l~ to be independent of L. Errors do 
not include t a. 
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5. CONCLUSIONS 

We generalized the results of de Meo et aL ~5~ about the scaling 
properties of SWA clusters also for the single clusters of WA. For the d =  3 
Ising model these scaling properties were well satisfied by the data. We 
found that the cluster distributions can be fitted with relatively simple 
functions. This parametrization allows the determination of the critical 
exponent fl/v = 0.516(6) from finite-size scaling at r = 0. To derive the value 
fl = 0.326(2) from scaling at z r 0, a value of v = 0.629 had to be used. The 
exponent 01 in the parametrization of q(x) distributions (8) at one value of 
T and L turned out to differ significantly from 1/6 if data for low cluster 
sizes s ~< 15 are included. Omitting the latter, we find that 01 is compatible 
with 1/6; howeve r , the fitted value strongly depends on the details of the 
parametrization. The same effect has been observed in d =  2. I5) 

In our parametrization finite-size effects are described by an asymmetric 
Gaussian, leading to a suprisingly good descrition of the distribution of the 
transition region from the power law to the sharp drop induced by the 
finite size L. The parameter describing the Gaussian peak exhibits the L 
dependence expected from finite-size scaling. Given the parametrization, we 
do not see any scale violations within our statistics. Using cylinder 
geometry, we checked that the largest clusters are indeed the clusters 
percolating in the finite volume. 
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